

Beschreibung

Busmodul – LonWorks®

[Control Basic / Control Touch]

Version: V 2.10

Netzwerkvariablen: Programm-ID RSI_R004

Inhaltsverzeichnis

1	Ausführungen	.3
2	Technische Daten	.4
3	Anschluss	.5 6 6
4	Einstellungen 4.1 Abschlusswiderstände, RS485-Schnittstelle 4.2 LonWorks [®] -Inbetriebnahme	.7 7 8
5	Netzwerkvariablen	.9
6	Diagnose1	L4
7	Auswechseln der Sicherungen	16
8	Firmware-Update1	L7
9	DIP-Schalter2	20

1 Ausführungen

Das Busmodul für "LonWorks[®]" ermöglicht es, den Betriebsstatus der Reflex-Steuerung in einem LonWorks[®]-Netz zur Verfügung zu stellen. Die Messwerte und Zustände der Steuerung werden dabei im Busmodul auf LonWorks[®]-Netzwerkvariablen abgebildet. Andere Geräte im LonWorks[®]-Netz können lesend auf diese Netzwerkvariablen zugreifen.

Der Anschluss der Steuerung an das Busmodul erfolgt über die RS485-Schnittstelle.

Dabei gibt es folgende Varianten:

- a) Standard (R-S-I Art.-Nr. 003542)
 Diese Variante wird verwendet, wenn das Busmodul über die "Vernetzungsschnittstelle" (S1) an die Steuerung angeschlossen wird. Das Busmodul übernimmt hier die "Masterfunktion" auf der RS-485-Schnittstelle zur Steuerung und ruft die Daten ab.
- b) Version Modulbus-Schnittstelle (R-S-I Art.-Nr. 003546) Diese Variante wird verwendet, wenn das Busmodul bei der Steuerung "Control-Touch" an der Modulbus-Schnittstelle <u>S2</u> der "Control Touch" (parallel zur Grundplatine) angeschlossen wird. Das Busmodul arbeitet hier als "EA-Modul" und wird von der Steuerung zyklisch angesprochen (Hier übernimmt die Steuerung also die "Masterfunktion").

Die jeweilige Ausführung kann auch über einen DIP-Schalter ausgewählt werden (siehe hierzu: Abschnitt 9, DIP-Schalter 1) !

2 Technische Daten

Umgebungsbedingungen:	Betriebstemperatur -5 °C 55 °C Lagertemperatur -40 °C 70 °C Schutzart IP64
Spannungsversorgung:	230 V AC, 50-60 Hz (IEC 38)
Sicherungen:	0,25 A träge (primär) 0,8 A träge (sekundär)
Schnittstelle LonWorks®:	Transceiver FTT-10A 78 kbit/s Anschluss über Steck-Schraub-Klemmen
Schnittstelle zur Steuerung:	RS485 oder RS232, 19,2 kBit/s, potentialfrei Anschluss über Steck-Schraub-Klemmen Protokoll RSI-spezifisch

Gehäuse: Kunststoffgehäuse Abmessungen siehe Zeichnung

4

3 Anschluss

Die Anschlussklemmen sind nach dem Öffnen des Gehäusedeckels zugänglich.

Vor Öffnen dieses Deckels ist der Netzstecker zu ziehen!

3.1 Spannungsversorgung 230 V AC

Das Busmodul wird mit einem Netzkabel mit Schukostecker ausgeliefert. Bei Bedarf kann ein anderes Netzkabel angeschlossen werden.

<u>Klemme</u>	<u>Funktion</u>
1	L1
2	Ν
3	Erdung

3.2 RS485-Schnittstelle zur Steuerung

Der Anschluss erfolgt an den Klemmen 4-7. Die Klemmen 8-19 werden derzeit nicht verwendet. Da die Schnittstelle potentialfrei ist, muss eine Dreidrahtverbindung verwendet werden.

<u>Klemme</u>	<u>Funktion</u>
4	Signal A (+)
5	Signal B (-)
6	Signalmasse
7	Schirm (optional)

Vor dem Anschluss der Schnittstelle ist zu prüfen, ob die richtige Ausführung des Busmoduls vorhanden ist, siehe Abschnitt 1. Die Verwendung einer falschen Ausführung kann zur Zerstörung der Schnittstellentreiber führen. Am Anfang und am Ende eines RS-485-Netzes werden Abschlusswiderstände benötigt. Die Aktivierung der Abschlusswiderstände wird in Abschnitt 4.1 beschrieben.

3.3 LonWorks[®]-Schnittstelle

<u>Klemme</u>	<u>Funktion</u>
20	Signal NETA
21	Signal NETB
22	Service-Taste
23	Signalmasse
24	Schirm

Die Service-Taste kann zwischen Klemme 22 und Klemme 23 angeschlossen werden.

4 Einstellungen

4.1 Abschlusswiderstände, RS485-Schnittstelle

Am Anfang und am Ende eines RS485-Netzes sind, insbesondere bei größeren Entfernungen, Abschluss-widerstände erforderlich. Im Busmodul sind Abschlusswiderstände für die RS485-Schnittstelle integriert, aber standardmäßig deaktiviert. Die Aktivierung der Abschlusswiderstände kann über Jumper, die sich oberhalb der Anschlussklemmen für die Schnittstelle befinden, vorgenommen werden. Hierzu muss der Klemmenraumdeckel und der große Gehäusedeckel geöffnet werden.

Vor dem Öffnen ist der Netzstecker zu ziehen.

Um die Abschlusswiderstände für die verwendete Schnittstelle COM1 zu aktivieren, sind die Jumper J1 und J2 auf die linke Position zu stecken (siehe linke Abbildung). Diese Einstellung ist bei größeren Leitungslängen zu wählen, wenn sich das Busmodul am Anfang oder am Ende des RS485-Netzes befindet. Wenn das Busmodul über eine kurze Leitung direkt mit der Steuerung verbunden wird, ist eine Aktivierung im allgemeinen nicht erforderlich. Wenn mehr als zwei Geräte vorhanden sind und sich das Busmodul nicht am Anfang oder Ende des Netzes befindet, ist eine Aktivierung nicht zulässig.

Hinweis:

Da die Schnittstelle COM2 derzeit nicht verwendet wird, ist die Einstellung von J3 und J4 belanglos.

4.2 LonWorks[®]-Inbetriebnahme

Die Einbindung des Busmoduls in das LonWorks[®]-Netz kann nur durch einen Fachbetrieb mit einem geeigneten LonWorks[®]-Management-Tool erfolgen. Die XIF-Datei des Busmoduls wird auf einer CD mitgeliefert. Alternativ kann die Konfiguration – sofern vom verwendeten LonWorks[®]-Management-Tool unterstützt – auch direkt aus dem Gerät ausgelesen werden.

Die zur Installation erforderliche Service-Taste kann an den Klemmen 22 und 23 angeschlossen werden.

Vor dem Öffnen des Gehäusedeckels ist der Netzstecker zu ziehen!

5 Netzwerkvariablen

In diesem Abschnitt wird die derzeit verwendete Netzwerkvariablen-Konfiguration beschrieben.

Es handelt sich dabei um eine anwendungsspezifische Konfiguration, die nicht den "LonMark Application-Layer Interoperability Guidelines" entspricht.

Stand:	2019-01-16
Programm-ID:	RSI_R004
XIF-Datei:	servako 2019-01-16.xif

NV		
lu de u	Name	SNVT Type
Index		
0	nvoPressure	SNVT_press (30)
1	nvoLevel	SNVT_lev_cont (21)
2	nvoRunHoursP1	SNVT_time_hour (124)
3	nvoRunHoursP2	SNVT_time_hour (124)
4	nvoWaterMeter	SNVT_vol_kilo (42)
5	nvoWaterMeter_32	User defined (0) – unsigned integer 32 bit
6	nvolnpState	SNVT_state (83)
7	nvoOutpState	SNVT_state (83)
8	nvoErrorState	SNVT_state (83)
9	nvoWarnState	SNVT_state (83)
10	nvoCommState	SNVT_state (83)
11	nvoLevel_16	SNVT_lev_percent (81)
12	nvoPressure2	SNVT_press (30)
13	nvoErrorState2	SNVT_state (83)
14	nvoErrorState3	SNVT_state (83)
15	nvoWarnState2	SNVT_state (83)
16	nvoWarnState3	SNVT_state (83)
17	nvoRunHoursP1_32	User defined (0) – unsigned integer 32 bit
18	nvoRunHoursP2_32	User defined (0) – unsigned integer 32 bit
19	nvoActBPV1	SNVT_lev_cont (21)
20	nvoActBPV2	SNVT_lev_cont (21)
21	nvoUnitType	SNVT_count (8)
22	NvoSWVersion	SNVT_count (8)

Erläuterungen:

Kommunikationsstatus

nvoCommState.bit15	Verbindung zwischen Steuerung und Busmodul gestört (Die anderen Netzwerkvariablen sind dann ungültig!)
Systemdruck	
nvoPressure	Typ SNVT_press
Druck Füllrohr	nur bei Servitec (optional!)
nvoPressure2	Typ SNVT_press
Füllstand	
I unstanu	entralit dei Servitec
nvoLevel nvoLevel16	Typ SNVT_lev_cont (Bereich auf 100 % begrenzt) Typ SNVT_lev_percent (identischer Wert / anderer Typ)

Betriebsstunden Pumpe 1 bzw. Kompressor 1 (16 Bit)

nvoRunHoursP1 Typ SNVT_time_hour

Betriebsstunden Pumpe 2 bzw. Kompressor 2 (16 Bit)

nvoRunHoursP2	Typ SNVT time hour	(falls vorhanden)
		(iuns voinunuen)

Wasserzähler (aufgelaufene Summe)

nvoWaterMeter	Typ SNVT_vol_kilo, Auflösung 100 Liter
nvoWaterMeter_32	User defined, 32 bit unsigned Integer, Auflösung 1 Liter
	(identischer Wert, nur anderer Typ)

Status der digitalen Eingänge

nvolnpState.bit15	Rückmeldung Pumpe 1
nvolnpState.bit14	Rückmeldung Pumpe 2
nvolnpState.bit13	Wassermangel-Schalter

$Busmodul - LonWorks \ensuremath{\mathbb{R}}$

Status der digitalen Ausgänge

Pumpe 2 ein
Pumpe 1 ein
Überstr.Ventil 2 auf (Servimat: Umschalting Sprührohr)
Überstr.Ventil 1 auf (Servimat: Motorventil MKH-2 auf)
Nachspeiseventil auf
Meldung: min. Niveau
Meldung: Sammelstörung
Meldung: Störung Nachspeisung (nur CT-MK200)

Störungen

nvoErrorState.bit15	Erweiterungsmodul (Option) defekt
nvoErrorState.bit14	EEPROM defekt
nvoErrorState.bit13	Unterspannung
nvoErrorState.bit12	Minmaler Druck unterschritten
nvoErrorState.bit11	Wassermangel
nvoErrorState.bit10	Pumpe 1 gestört
nvoErrorState.bit9	Kompressor 1 gestört
nvoErrorState.bit8	Pumpe 2 gestört
nvoErrorState.bit7	Kompressor 2 gestört
nvoErrorState.bit6	Druckmessung gestört
nvoErrorState.bit5	Niveaumessung gestört
nvoErrorState.bit4	Druckmessung Sprührohr gestört (nur bei Servitec)
nvoErrorState.bit3	länger als 4 Stunden im STOPP-Modus
nvoErrorState.bit2	Wassermangel 2 (nur bei Servitec und Servimat)
nvoErrorState.bit1	Abgleichparameter falsch (Grundplatine)
nvoErrorState.bit0	Kommunikation gestört (Vernetzung)
nvoErrorState2.bit15	Störung Grundplatine (nicht "control basic")
nvoErrorState2.bit14	Störung digitale Geberspannung (nicht "control basic")
nvoErrorState2.bit13	Störung analoge Geberspannung (nicht "control basic")
nvoErrorState2.bit12	Störung Geberspannung Kugelhahn 1
nvoErrorState2.bit11	Störung Geberspannung Kugelhahn 2
nvoErrorState2.bit10	Störung Jumper "Druck" (nicht "control basic")
nvoErrorState2.bit9	Störung Jumper "Niveau" (nicht "control basic")
nvoErrorState2.bit8	Trockenlauf (nur "control basic")
nvoErrorState2.bit7	Wassermangel 3 (nur "control basic")
nvoErrorState2.bit6	Wassermangel 4 (nur "control basic")
nvoErrorState2.bit5	Störung Leitfähigkeitsmessung (Option!)
nveErrorState3	Zur Zeit (noch) nicht verwendet !

Warnungen

nvoWarnState.bit15	Arbeitsbereich überschritten (nur bei Servitec)
nvoWarnState.bit14	Maximales Niveau überschritten
nvoWarnState.bit13	Pumpenlaufzeit überschritten
nvoWarnState.bit12	Nachspeisezeit überschritten
nvoWarnState.bit11	Nachspeisezyklen überschritten
nvoWarnState.bit10	Maximaler Druck überschritten
nvoWarnState.bit9	Nachspeisemenge überschritten
nvoWarnState.bit8	Füllzeit überschritten (nur bei Servitec)
nvoWarnState.bit7	Füllmenge überschritten (nur bei Servitec)
nvoWarnState.bit6	Ausschiebezeit überschritten (nur bei Servitec)
nvoWarnState.bit5	Nachspeiseventil undicht
nvoWarnState.bit4	Spannungsausfall
nvoWarnState.bit3	Nullabgleich fehlerhaft
nvoWarnState.bit2	Parameter fehlerhaft
nvoWarnState.bit1	Maximale Nachspeisemenge überschritten
nvoWarnState.bit0	Wartungsanforderung
nvoWarnState2.bit15	Batterie tauschen (nicht "control basic")
nvoWarnState2.bit14	Enthärtung, Patrone tauschen
nvoWarnState2.bit13	Datenlogger überprüfen (nicht "control basic")
nvoWarnState2.bit12	
nvoWarnState2.bit11	länger als 4 Stunden im STOP-Modus
	(nur "control basic")
nvoWarnState3.bit15	Erweiterungsmodul, Meldung Digitaleingang 1
nvoWarnState3.bit14	Erweiterungsmodul, Meldung Digitaleingang 2
nvoWarnState3.bit13	Erweiterungsmodul, Meldung Digitaleingang 3
nvoWarnState3.bit12	Erweiterungsmodul, Meldung Digitaleingang 4
nvoWarnState3.bit11	Erweiterungsmodul, Meldung Digitaleingang 5
nvoWarnState3.bit10	Erweiterungsmodul, Meldung Digitaleingang 6
nvoWarnState3.bit9	Erweiterungsmodul, Meldung Digital <u>ausgang</u> 6

Betriebsstunden Pumpe 1 bzw. Kompressor 1 (32 Bit)

nvoRunHoursP1_32	Betriebsstunden Pumpe/Kompr. 1 (User defined, 32 Bit, unsigned Integer, Auflösung 1 h)
Betriebsstunden Pu	Impe 2 bzw. Kompressor 2 (32 Bit)
nvoRunHoursP2_32	Betriebsstunden Pumpe/Kompr. 2 (User defined, 32 Bit, unsigned Integer, Auflösung 1 h)

Aktuelle Position von Motorkugelhahn 1

nvoActBPV1	Typ SNVT lev cont	(Bereich auf 100 % begrenzt)
	<i>,</i>	

Aktuelle Position von Motorkugelhahn 2

nvoActBPV2	Typ SNVT lev cont	(Bereich auf 100 % begrenzt)
		(Bereleff dur 100 /0 Begreffzt)

Anlagentyp

nvoUnitType	Typ SNVT_count 1 = Variomat 2 = Variomat Giga 3 = Reflexomat / C 4 = Servitec	
	5 = Fillcontrol Auto 6 = Servitec-25 7 = Servitec-30 8 = Fillcontrol Auto Compact 9 = Fillcontrol Plus)) Nur bei > "Control Basic") vorhanden!)
	11 = Servimat	

Softwareversion

2.10)

6 Diagnose

Das Busmodul enthält mehrere Leuchtdioden, an denen der Betriebszustand des Moduls abgelesen werden kann. LED 1 und LED 2 befinden sich im Klemmenraum rechts neben dem Klemmenblock für die Schnitt-stellen, LED 3 bis LED 6 befinden sich auf dem LonWorks[®]-Steckmodul.

Bei geöffnetem Gehäuse darf das Busmodul nur unter äußerster Vorsicht und ständiger Aufsicht durch geeignetes Fachpersonal an Spannung angeschlossen werden, da bei Berührung der 230 V Versorgungsspannung Lebensgefahr besteht.

- LED 1 Verbindung zur Steuerung (Normalzustand: ein) leuchtet, wenn eine Verbindung besteht blinkt nach einiger Zeit, wenn keine Verbindung besteht
- LED 2 Erkennung des Feldbus-Moduls (Normalzustand: aus) blinkt, wenn das LonWorks[®]-Steckmodul nicht erkannt wurde

Wenn beide LEDs wechselweise blinken, hat befindet sich das Busmodul im Firmwareupdate-Modus (siehe Abschnitt 9). Dies ist der Fall, wenn der DIP-Schalter 8 auf "ON" steht, oder wenn ein voran-gegangenes Firmwareupdate abgebrochen wurde.

02.07.2020

	ABBREAD BEAD
	Leuchtdioden LED 3 bis LED 6
LED 3	nicht verwendet
LED 4	 Service-LED ist aus, wenn das Busmodul in einem LonWorks[®]-Netz installiert wurde und korrekt arbeitet (Normalzustand) blinkt grün, wenn das Busmodul noch nicht in einem LonWorks[®]-Netz installiert wurde (Auslieferungszustand) leuchtet grün, wenn ein Fehler vorliegt. Wenn diese Fehler- meldung nach dem aus- und wieder einschalten der Spannungsversorgung immer noch anliegt, ist das Busmodul defekt.
LED 5	 Modul-Status leuchtet grün, wenn das Modul korrekt arbeitet (Normalzustand) leuchtet oder blinkt rot, wenn ein Fehler vorliegt. Wenn diese Fehlermeldung nach dem aus- und wieder einschalten der Spannungsversorgung immer noch anliegt, ist das Busmodul defekt.
LED 6	Wink-LED - blinkt rot, wenn ein Wink-Kommando über das LonWorks [®] - Netz empfangen wird.

7 Auswechseln der Sicherungen

Die Sicherungen befinden sich neben den Netzanschlussklemmen und links oberhalb des Transformators (nach Öffnen des Gehäusedeckels zugänglich).

Vor dem Öffnen ist der Netzstecker zu ziehen.

Die Werte der Sicherungen sind der folgenden Abbildung zu entnehmen:

8 Firmware-Update

Eine neue Version der Firmware kann über die serielle Schnittstelle COM1 in das Busmodul geladen werden. Dazu muss diese Schnittstelle an einen PC angeschlossen werden.

Benötigt werden:

- ein PC mit einer RS232-Schnittstelle
- ein RS232/RS485-Umsetzer oder ein USB/RS485-Umsetzer oder ein Flash-Programmieradapter, oder ein Kabel zum direkten Anschluss des PCs an die RS232-Schnittstelle des Busmoduls
- die PC-Software zur Flash-Programmierung
- die neue Firmware des Busmoduls (*.hex)

Die Vorgehensweise ist wie folgt:

- 1. Busmodul von der Versorgungsspannung trennen
- 2. Klemmenraumdeckel und großen Gehäusedeckel öffnen
- 3. Die Grundplatine des Busmoduls enthält 8 DIP-Schalter, die sich links vorne unter dem LonWorks®-Steckmodul befinden

4. Der DIP-Schalter 8 ist auf ON zu setzen, die anderen DIP-Schalter dürfen nicht verändert werden.

 Den Schnittstellenumsetzer oder Flash-Programmieradapter an die RS485-Schnittstelle des Busmoduls (Klemmen 4-7) anschließen, oder die RS232-Schnittstelle des PCs direkt an die RS232-Schnittstelle des Busmoduls (Klemmen 12-14) anschließen. Die Verbindung zur Reflex-Steuerung muss dabei auf jeden Fall entfernt werden.

- 6. Gehäuse aus Sicherheitsgründen schließen
- 7. Busmodul an Spannung anschließen
- 8. Programm zur Flash-Programmierung am PC starten

- 9. Schaltfläche Öffnen betätigen und die HEX-Datei mit der Firmware des Busmoduls auswählen
- 10. Schaltfläche Brennen betätigen, gegebenenfalls Schnittstelleneinstellungen ändern und den Programmiervorgang mit **Ok** starten.

Flash brennen	
Einstellungen	
über die Schnittstelle COM1, 19200 Bd des PC	ändern
Abbrechen	

- 11. Der Fortschritt des Programmiervorgangs wird in der Statuszeile des PC-Programms angezeigt. Ende des Programmiervorgangs abwarten und PC-Programm schließen.
- 12. Spannungsversorgung des Busmoduls ausstecken
- 13. Gehäuse öffnen
- 14. Verbindung zum PC entfernen und Verbindung zur Reflex-Steuerung wieder anklemmen.

15. Den DIP-Schalter 8 wieder auf OFF stellen, damit das Busmodul beim nächsten Einschalten der Spannungsversorgung in den Betriebsmodus wechselt. Die Position der DIP-Schalter 1-7 darf auf keinen Fall verändert werden.

- 16. Gehäuse schließen
- 17. Spannungsversorgung anstecken und Funktion des Busmoduls überprüfen

9 DIP-Schalter

An den DIP-Schaltern (rot) auf der Grundplatine des Busmoduls müssen und dürfen normalerweise keine Änderungen durchgeführt werden (außer zum Firmware-Update, siehe Abschnitt 10). Der Vollständigkeit halber wird hier trotzdem die derzeitige Verwendung dokumentiert:

DIP-Schalter	Funktion
1	Funktion der Schnittstelle COM1 ON = Slave (entspricht Ausführung Modulbus- Schnittstelle; Control Touch => RS485-s2)
2	Auswahl des verwendeten Feldbus-Steckmoduls ON = Profibus-Modul von RSI (Busmodul Profibus) OFF = AnyBus-Modul von HMS (andere Busmodule)
3	reserviert
4	reserviert
5	reserviert
6	reserviert
7	Wechsel in Konfigurations-Modus (derzeit nur RSI- intern verwendet!) ON = Konfigurations-Modus OFF = normaler Betrieb
8	Wechsel in den Modus zum Firmware-Update ON = Firmware-Update OFF = normaler Betrieb

Die normalen Einstellungen sind wie folgt:

ON 1 2 3 4 5 6 7 8

ON 1 2 3 4 5 6 7 8

Busmodul für LonWorks[®], Ausführung Standard Busmodul für LonWorks[®], Ausführung MK200 bzw. Version Modulbus-Schnittstelle (Control Touch => RS485-s2)

Die Einstellung der DIP-Schalter wird zum Teil erst beim Aus- und Wiedereinschalten der Spannungsversorgung neu eingelesen.

